216 research outputs found

    Expression of CDK8 and CDK8-interacting genes as potential biomarkers in breast cancer

    Get PDF
    CDK8 and its paralog CDK19, in complex with CCNC, MED12 and MED13, are transcriptional regulators that mediate several carcinogenic pathways and the chemotherapy-induced tumor-supporting paracrine network. Following up on our previous observation that CDK8, CDK19 and CCNC RNA expression is associated with shorter relapse-free survival (RFS) in breast cancer, we now found by immunohistochemical analysis that CDK8/19 protein is overexpressed in invasive ductal carcinomas relative to non-malignant mammary tissues. Meta-analysis of transcriptomic data revealed that higher CDK8 expression is associated with shorter RFS in all molecular subtypes of breast cancer. These correlations were much stronger in patients who underwent systemic adjuvant therapy, suggesting that CDK8 impacts the failure of systemic therapy. The same associations were found for CDK19, CCNC and MED13. In contrast, MED12 showed the opposite association with a longer RFS. The expression levels of CDK8 in breast cancer samples were directly correlated with the expression of MYC, as well as CDK19, CCNC and MED13 but inversely correlated with MED12. CDK8, CDK19 and CCNC expression was strongly increased and MED12 expression was decreased in tumors with mutant p53. Gene amplification is the most frequent type of genetic alterations of CDK8, CDK19, CCNC and MED13 in breast cancers (9.7% of which have amplified MED13), whereas point mutations are more common in MED12. These results suggest that the expression of CDK8 and its interactive genes has a profound impact on the response to adjuvant therapy in breast cancer in accordance with the role of CDK8 in chemotherapy-induced tumor-supporting paracrine activities. © 2015 Bentham Science Publishers

    HPV infection and immunochemical detection of cell-cycle markers in verrucous carcinoma of the penis

    Get PDF
    Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16INK4A and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16INK4A and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16INK4A and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16INK4A expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.Peer reviewedFinal Accepted Versio

    Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Get PDF
    BACKGROUND: The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. METHODS: LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. RESULTS: The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. CONCLUSIONS: These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes

    p21Waf1 expression is regulated by nuclear intermediate filament vimentin in neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human neuroblastoma (NB) cell lines may present with either one of the so-called S-and N-subtypes. We have previously reported a strong correlation between protein expression levels of vimentin, an S-subtype marker, and the p21<sup>Waf1 </sup>cyclin-dependent kinase inhibitor. We here investigated whether this correlation extend to the mRNA level in NB cell lines as well as in patients' tumors. We also further explored the relationship between expression of vimentin and p21, by asking whether vimentin could regulate p21 expression.</p> <p>Methods</p> <p>Vimentin and p21 mRNA levels in NB cell lines as well as in patients' tumors (<it>n </it>= 77) were quantified using Q-PCR. Q-PCR data obtained from tumors of high risk NB patients (<it>n </it>= 40) were analyzed in relation with the overall survival using the Log-rank Kaplan-Meier estimation. siRNA-mediated depletion or overexpression of vimentin in highly or low expressing vimentin cell lines, respectively, followed by protein expression and promoter activation assays were used to assess the role of vimentin in modulating p21 expression.</p> <p>Results</p> <p>We extend the significant correlation between vimentin and p21 expression to the mRNA level in NB cell lines as well as in patients' tumors. Overall survival analysis from Q-PCR data obtained from tumors of high risk patients suggests that lower levels of p21 expression could be associated with a poorer outcome. Our data additionally indicate that the correlation observed between p21 and vimentin expression levels results from p21 transcriptional activity being regulated by vimentin. Indeed, downregulating vimentin resulted in a significant decrease in p21 mRNA and protein expression as well as in p21 promoter activity. Conversely, overexpressing vimentin triggered an increase in p21 promoter activity in cells with a nuclear expression of vimentin.</p> <p>Conclusion</p> <p>Our results suggest that p21 mRNA tumor expression level could represent a refined prognostic factor for high risk NB patients. Our data also show that vimentin regulates p21 transcription; this is the first demonstration of a gene regulating function for this type III-intermediate filament.</p

    Knockdown of MBP-1 in Human Foreskin Fibroblasts Induces p53-p21 Dependent Senescence

    Get PDF
    MBP-1 acts as a general transcriptional repressor. Overexpression of MBP-1 induces cell death in a number of cancer cells and regresses tumor growth. However, the function of endogenous MBP-1 in normal cell growth regulation remains unknown. To unravel the role of endogenous MBP-1, we knocked down MBP-1 expression in primary human foreskin fibroblasts (HFF) by RNA interference. Knockdown of MBP-1 in HFF (HFF-MBPsi-4) resulted in an induction of premature senescence, displayed flattened cell morphology, and increased senescence-associated beta-galactosidase activity. FACS analysis of HFF-MBPsi-4 revealed accumulation of a high number of cells in the G1-phase. A significant upregulation of cyclin D1 and reduction of cyclin A was detected in HFF-MBPsi-4 as compared to control HFF. Senescent fibroblasts exhibited enhanced expression of phosphorylated and acetylated p53, and cyclin-dependent kinase inhibitor, p21. Further analysis suggested that promyolocytic leukemia protein (PML) bodies are dramatically increased in HFF-MBPsi-4. Together, these results demonstrated that knockdown of endogenous MBP-1 is involved in cellular senescence of HFF through p53-p21 pathway

    Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas

    Get PDF
    Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence(1,2). Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies(3). To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma(4,5). We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth

    Drug-induced senescence bystander proliferation in prostate cancer cells in vitro and in vivo

    Get PDF
    Senescence is a distinct cellular response induced by DNA-damaging agents and other sublethal stressors and may provide novel benefits in cancer therapy. However, in an ageing model, senescent fibroblasts were found to stimulate the proliferation of cocultured cells. To address whether senescence induction in cancer cells using chemotherapy induces similar effects, we used GFP-labelled prostate cancer cell lines and monitored their proliferation in the presence of proliferating or doxorubicin-induced senescent cancer cells in vitro and in vivo. Here, we show that the presence of senescent cancer cells increased the proliferation of cocultured cells in vitro through paracrine signalling factors, but this proliferative effect was significantly less than that seen with senescent fibroblasts. In vivo, senescent cancer cells failed to increase the establishment, growth or proliferation of LNCaP and DU145 xenografts in nude mice. Senescent cells persisted as long as 5 weeks in tumours. Our results demonstrate that although drug-induced senescent cancer cells stimulate the proliferation of bystander cells in vitro, this does not significantly alter the growth of tumours in vivo. Coupled with clinical observations, these data suggest that the proliferative bystander effects of senescent cancer cells are negligible and support the further development of senescence induction as therapy

    Importance of Intracellular pH in Determining the Uptake and Efficacy of the Weakly Basic Chemotherapeutic Drug, Doxorubicin

    Get PDF
    Low extracellular pH (pHe), that is characteristic of many tumours, tends to reduce the uptake of weakly basic drugs, such as doxorubicin, thereby conferring a degree of physiological resistance to chemotherapy. It has been assumed, from pH-partition theory, that the effect of intracellular pH (pHi) is symmetrically opposite, although this has not been tested experimentally. Doxorubicin uptake into colon HCT116 cells was measured using the drug's intrinsic fluorescence under conditions that alter pHi and pHe or pHi alone. Acutely, doxorubicin influx across the cell-membrane correlates with the trans-membrane pH-gradient (facilitated at alkaline pHe and acidic pHi). However, the protonated molecule is not completely membrane-impermeant and, therefore, overall drug uptake is less pHe-sensitive than expected from pH-partitioning. Once inside cells, doxorubicin associates with slowly-releasing nuclear binding sites. The occupancy of these sites increases with pHi, such that steady-state drug uptake can be greater with alkaline cytoplasm, in contradiction to pH-partition theory. Measurements of cell proliferation demonstrate that doxorubicin efficacy is enhanced at alkaline pHi and that pH-partition theory is inadequate to account for this. The limitations in the predictive power of pH-partition theory arise because it only accounts for the pHi/pHe-sensitivity of drug entry into cells but not the drug's subsequent interactions that, independently, show pHi-dependence. In summary, doxorubicin uptake into cells is favoured by high pHe and high pHi. This modified formalism should be taken into account when designing manoeuvres aimed at increasing doxorubicin efficacy

    Expression of coxsackie and adenovirus receptor distinguishes transitional cancer states in therapy-induced cellular senescence

    Get PDF
    Therapy-induced cellular senescence describes the phenomenon of cell cycle arrest that can be invoked in cancer cells in response to chemotherapy. Sustained proliferative arrest is often overcome as a contingent of senescent tumor cells can bypass this cell cycle restriction. The mechanism regulating cell cycle re-entry of senescent cancer cells remains poorly understood. This is the first report of the isolation and characterization of two distinct transitional states in chemotherapy-induced senescent cells that share indistinguishable morphological senescence phenotypes and are functionally classified by their ability to escape cell cycle arrest. It has been observed that cell surface expression of coxsackie and adenovirus receptor (CAR) is downregulated in cancer cells treated with chemotherapy. We show the novel use of surface CAR expression and adenoviral transduction to differentiate senescent states and also show in vivo evidence of CAR downregulation in colorectal cancer patients treated with neoadjuvant chemoradiation. This study suggests that CAR is a candidate biomarker for senescence response to antitumor therapy, and CAR expression can be used to distinguish transitional states in early senescence to study fundamental regulatory events in therapy-induced senescence
    • …
    corecore